Numerical stochastic perturbation theory for twisted reduced principal chiral model

2021 2nd IITB-Hiroshima workshop Program (2021/10/25-27)

Yingbo Ji(Hiroshima.U) in collaboration with Ken-Ichi Ishikawa(Hiroshima.U)

Table of contents

- 1. Motivation & Introduction
- 2. Numerical stochastic perturbation theory
- 3. NPST + Matrix model
- 4. Numerical results
- 5. Summary

Motivation & Introduction

The principal chiral model for SU(N)

 $Z = \int \prod dU$

 $\delta U(n) = \delta$

- Two dimensional $SU(N_c) \times SU(N_c)$ principal chiral model asymptotically free
- Non-perturbative studies on the lattice
 - Finite volume correction
- Perturbative calculation on the lattice when $N \rightarrow \infty$ limit hold
- QCD like theory
- Too expensive L^2 SU(N) matrix for one configuration

Rank of matrix

$$U_{\mu}(n) \exp\left\{-bN_{c}\operatorname{Tr}\left(\delta_{\mu}U(n)\delta_{\mu}U^{\dagger}(n)\right)\right\}$$
with

$$U(n+\mu) - U(n) \quad \beta = bN_{c}$$

$$\langle \mathcal{O}(L) \rangle = \langle \mathcal{O}^{\infty} \rangle - \frac{F(L)}{L^2} + \mathcal{O}(L^4)$$

m limit hold

Motivation & Introduction

- Tuning the twist parameter K
 - K, N co-prime \boldsymbol{V}

•
$$\frac{K}{N} > \Lambda_{cut}$$

• Finite-N corrections \leftrightarrow finite-size effects ($L = N_c$)

$$-bN_c\sum_{\mu}\mathrm{Tr}\left(V_{\mu}V_{\mu}^{\dagger}\right)$$

with

$$V_{\mu} \equiv \Gamma_{\mu} U \Gamma_{\mu}^{\dagger} - U$$

= $\exp\left\{\frac{2\pi i K}{N_c}\right\} \Gamma_2 \Gamma_1 \quad \Gamma_{\mu} \in SU(N_c)$

Motivation & Introduction

- Numerical Stochastic Perturbation Theory (NSPT)
 - Large N
 - High-order coefficient
- divergence occurs when we include high-order coefficients.

• A method that may be able to deal with the perturbation calculation on the lattice up to high-order terms is

• In QFT the asymptotic nature of an expansion in powers of the coupling constant α suggests a factorial

Numerical stochastic perturbation theory

- Monte Carlo simulation: Evaluation of Euclidean path integrals for field theories.
 - $Z = \left| D\phi \exp[-S[\phi]] \right|$ Partition function

Expectation value of observable = Evaluate multi-dimensional integral

- $P[\phi] = \frac{1}{7} \exp[-\frac{1}{7} \exp[-\frac{$ Probabilistic density function
- Numerical application of stochastic quantization (G.Parisi, Y-S.Wu, 1981)
 - Langevin equation => molecular dynamics base
 - Adding an extra DoF $\phi(x) \rightarrow \phi(x, t)$
 - Infinite stochastic time limit

$$\left\langle O\left[\phi_{\eta}\left(x_{1};t\right)\ldots\phi_{\eta}\left(x_{n};t\right)\right]\right\rangle_{\eta}\rightarrow_{t\rightarrow\infty}\left\langle O\left[\phi\left(x_{1}\right)\ldots\phi\left(x_{n}\right)\right]\right
angle$$

$$\langle 0 \rangle = \frac{1}{Z} \int D\phi O[\phi] \exp[-S[\phi]]$$

$$-S[\phi]] \qquad \langle 0 \rangle = \int D\phi O[\phi] P[\phi]$$

 π : Generated from Gaussian noise

sed

$$H = \frac{\pi^2}{2} + S[\phi] \qquad P'[\pi, \phi] = \frac{1}{Z'} \exp\left[-\frac{\pi^2}{2} - S[\phi]\right]$$

$$\dot{\pi} = -\frac{\partial S}{\partial \phi} = F, \dot{\phi} = \pi \qquad \langle O \rangle = \int D\pi D\phi O[\phi] P'[\phi]$$

Numerical stochastic perturbation theory

• Evaluate the perturbation expansion of physical quantities

 $S[\phi] = S_0[\phi] + S_{Int}[\phi, g]$

• Hierarchical system of partial differential equations

$$\dot{\pi}^{(k)} = -\frac{\partial S^{(k)}}{\partial \phi} \left[\phi^{(0)}, \phi^{(1)}, \dots, \phi^{(k-1)} \right], \quad \dot{\phi}^{(k)} = \pi^{(k)} \quad k = 0, 1, 2, \dots$$

$$\langle 0 \rangle = \sum_{k=0}^{\infty} g^k \left\langle O^{(k)} \right\rangle = \lim_{T \to \infty} \frac{1}{T} \sum_{k=0}^{\infty} g^k O^{(k)} \left[\phi^{(0)}(t), \phi^{(1)}(t), \dots, \phi^{(k)}(t) \right]$$

$$\phi = \sum_{k=0}^{N_{trun}} g^k \phi^{(k)}, \pi = \sum_{k=0}^{N_{trun}} g^k \pi^{(k)}$$

NSPT for matrix model

Convolution operator (※)

$$A = \sum_{k=0}^{l} g^{k} A^{(k)} = A^{(0)} + g A^{(1)} + g^{2} A^{(2)} + \cdots \qquad B = \sum_{k=0}^{l} g^{k} B^{(k)} = B^{(0)} + g B^{(1)} + g^{2} B^{(2)} + \cdots$$
$$AB = C = \sum_{k=0}^{N_{true}} g^{k} C^{(k)} = C^{(0)} + g C^{(1)} + g^{2} C^{(2)} + \cdots \qquad C^{(l)} = (A \circledast B)^{(l)} = \sum_{k=0}^{l} A^{(l-k)} B^{(k)}$$

• Expansion for HMD equation(matrix model)

• Expansion for $F^{(i)}$

$$F^{(k)} = iN_c \left(V^{(k)} - \frac{1}{N_c} \operatorname{Tr}[V^{(k)}] \right)$$
$$V^{(k)} = S^{(k)} - S^{(k)^{\dagger}}$$
$$S^{(k)} = 4U^{(k)} + X^{(k)} + (U \circledast X)^{(k)}$$
$$X^{(k)} = \sum_{\mu=1}^{2} \left[\Gamma^{\dagger}_{\mu} U^{(k)^{\dagger}} \Gamma_{\mu} + \Gamma_{\mu} U^{(k)^{\dagger}} \Gamma_{\mu} \right]$$

$$\dot{U}^{(i)} = i(\pi \circledast U)^{(i)}$$
$$\dot{\pi}^{(i)} = F^{(i)}$$

 $k = 1...N_{truncated}$ $k = 0..N_{truncated}$ י† μ

NSPT for matrix model

- Workflow
 - Test NSPT for few N_c and a proper K
 - Calculate internal energy up to $\mathcal{O}(g^8)$
 - Perform $1/N_c^2$ fitting

$$E = \frac{1}{2N_c} \sum_{\mu=1,2} \operatorname{Re} \operatorname{Tr} \left[U \Gamma_u U^{\dagger} \Gamma_u^{\dagger} \right]$$

- Few points that need attention
 - The problem with ergodicity in lead order
 - Randomization the trajectory length
 - Partial momentum refreshing scheme $\pi_{\mu} = c_1 \pi_{\mu} + \mu + \sqrt{1 c_1^2} \eta_{\mu}$
 - Computationally intensive part : convolution operation
 - Naive algorithm $\propto \mathcal{O}(N_{trun}^2)$
 - FFT based convolution $\propto O(N_{trun} log N_{trun})$
 - Violation of special unitarity

.

- Check the norm of targeted matrix
- Implement re-unitalization scheme

Numerical results 1 loop $\mathcal{O}(b)$ case (no volume dependency)

	Theoretical value	NSPT
$E^{(1)}$	-1/8	-0.124999

Numerical results 2 and 3 $\mathcal{O}(b^{2,3})$ loop case (volume dependency)

Theoretical value	NSPT
-0.00390625	-0.00390637(23)
-0.000544	-0.000545(4)

Numerical results 4 loop $\mathcal{O}(b^4)$ result

• Our result for four loop case is $E^{(4)} = -0.00009998(36)$

Numerical results Factorization

$\langle \mathcal{O}_1 \mathcal{O}_2 \rangle = \langle \mathcal{O}_1 \rangle \langle \mathcal{O}_2 \rangle + \mathbf{O}(1/N_c^2)$ $\kappa_2 = var(E) = \langle E^2 \rangle - \langle E \rangle^2 \Rightarrow 0 \text{ as } N_c \rightarrow \infty$

Summary

- Calculation up to $\mathcal{O}(g^8)$ show the feasibility of combining NSPT and TRPCM.
- The value of the first three coefficients matches very precisely with its theoretical values in the large-N limit.
- The 2 and 3 loop result shows how the volume dependency was eliminated as $N_c
 ightarrow \infty$
- 4 loop coefficient with considerable precision.

