Numerical stochastic perturbation theory for twisted reduced principal chiral model

Yingbo Ji(Hiroshima.U) in collaboration with Ken-Ichi Ishikawa(Hiroshima.U)

Table of contents

1. Motivation \& Introduction
2. Numerical stochastic perturbation theory
3. NPST + Matrix model
4. Numerical results
5. Summary

Motivation \& Introduction

- Two dimensional $\mathrm{SU}\left(N_{c}\right) \times \mathrm{SU}\left(N_{c}\right)$ principal chiral model - asymptotically free
- Non-perturbative studies on the lattice
- Finite volume correction

$$
\langle\mathcal{O}(L)\rangle=\left\langle\mathcal{O}^{\infty}\right\rangle-\frac{F(L)}{L^{2}}+\mathcal{O}\left(L^{4}\right)
$$

- Perturbative calculation on the lattice when $N \rightarrow \infty$ limit hold
- QCD like theory
- Too expensive $L^{2} S U(N)$ matrix for one configuration

Motivation \& Introduction

Twisted Eguchi-Kawai reduction : from lattice to single site

$$
\begin{gathered}
S=-b N_{c} \sum_{\mu} \operatorname{Tr}\left(V_{\mu} V_{\mu}^{\dagger}\right) \\
\text { with } \\
V_{\mu} \equiv \Gamma_{\mu} U \Gamma_{\mu}^{\dagger}-U \\
\Gamma_{1} \Gamma_{2}=\exp \left\{\frac{2 \pi i K}{N_{c}}\right\} \Gamma_{2} \Gamma_{1} \quad \Gamma_{\mu} \in S U\left(N_{c}\right)
\end{gathered}
$$

- Volume reduction was held in the large-N limit
- Tuning the twist parameter K
- K, N co-prime
- $\frac{K}{N}>\Lambda_{\text {cut }}$
- Finite-N corrections \leftrightarrow finite-size effects $\left(L=N_{c}\right)$

Motivation \& Introduction

- A method that may be able to deal with the perturbation calculation on the lattice up to high-order terms is Numerical Stochastic Perturbation Theory (NSPT)
- Large N
- High-order coefficient
- In QFT the asymptotic nature of an expansion in powers of the coupling constant α suggests a factorial divergence occurs when we include high-order coefficients.

Numerical stochastic perturbation theory

- Monte Carlo simulation: Evaluation of Euclidean path integrals for field theories.
- Partition function

$$
Z=\int D \phi \exp [-S[\phi]]
$$

$$
\langle 0\rangle=\frac{1}{Z} \int D \phi O[\phi] \exp [-S[\phi]]
$$

Expectation value of observable $=$ Evaluate multi-dimensional integral

- Probabilistic density function $\quad P[\phi]=\frac{1}{Z} \exp [-S[\phi]] \quad\langle 0\rangle=\int D \phi O[\phi] P[\phi]$
- Numerical application of stochastic quantization (G.Parisi, Y-s.Wu, 1981)
- Langevin equation => molecular dynamics based

$$
H=\frac{\pi^{2}}{2}+S[\phi] \quad P^{\prime}[\pi, \phi]=\frac{1}{Z^{\prime}} \exp \left[-\frac{\pi^{2}}{2}-S[\phi]\right]
$$

- Adding an extra $\operatorname{DoF} \phi(x) \rightarrow \phi(x, t)$

$$
\dot{\pi}=-\frac{\partial S}{\partial \phi}=F, \dot{\phi}=\pi
$$

π : Generated from Gaussian noise

$$
\partial S \quad H=\frac{\pi^{2}}{2}+S[\phi]
$$

- Infinite stochastic time limit

$$
\left\langle O\left[\phi_{\eta}\left(x_{1} ; t\right) \ldots \phi_{\eta}\left(x_{n} ; t\right)\right]\right\rangle_{\eta} \rightarrow_{t \rightarrow \infty}\left\langle O\left[\phi\left(x_{1}\right) \ldots \phi\left(x_{n}\right)\right]\right\rangle
$$

Numerical stochastic perturbation theory

- Evaluate the perturbation expansion of physical quantities

$$
S[\phi]=S_{0}[\phi]+S_{\text {Int }}[\phi, g] \quad \phi=\sum_{k=0}^{N_{\text {rum }}} g^{k} \phi^{(k)}, \pi=\sum_{k=0}^{N_{\text {rum }}} g^{k} \pi^{(k)}
$$

- Hierarchical system of partial differential equations

$$
\begin{gathered}
\dot{\pi}^{(k)}=-\frac{\partial S^{(k)}}{\partial \phi}\left[\phi^{(0)}, \phi^{(1)}, \ldots, \phi^{(k-1)}\right], \quad \dot{\phi}^{(k)}=\pi^{(k)} \quad k=0,1,2, \ldots \\
\langle 0\rangle=\sum_{k=0} g^{k}\left\langle O^{(k)}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{T} \sum_{k=0} g^{k} O^{(k)}\left[\phi^{(0)}(t), \phi^{(1)}(t), \ldots, \phi^{(k)}(t)\right]
\end{gathered}
$$

NSPT for matrix model

- Convolution operator \circledast

$$
\begin{aligned}
& A=\sum_{k=0} g^{k} A^{(k)}=A^{(0)}+g A^{(1)}+g^{2} A^{(2)}+\cdots \quad B=\sum_{k=0} g^{k} B^{(k)}=B^{(0)}+g B^{(1)}+g^{2} B^{(2)}+\cdots \\
& A B=C=\sum_{k=0}^{N_{\text {nnan }}} g^{k} C^{(k)}=C^{(0)}+g C^{(1)}+g^{2} C^{(2)}+\cdots \quad C^{(l)}=(A \circledast B)^{(l)}=\sum_{k=0}^{l} A^{(l-k)} B^{(k)}
\end{aligned}
$$

- Expansion for HMD equation(matrix model)

$$
\begin{aligned}
\dot{U}^{(i)} & =i(\pi \circledast U)^{(i)} \\
\dot{\pi}^{(i)} & =F^{(i)}
\end{aligned}
$$

- Expansion for $F^{(i)}$

$$
F^{(k)}=i N_{c}\left(V^{(k)}-\frac{1}{N_{c}} \operatorname{Tr}\left[V^{(k)}\right]\right)
$$

$$
\begin{array}{rlr}
V^{(k)} & =S^{(k)}-S^{(k)^{\dagger}} & \\
S^{(k)} & =4 U^{(k)}+X^{(k)}+(U \circledast X)^{(k)} & k=1 \ldots N_{\text {truncated }} \\
X^{(k)} & =\sum_{\mu=1}^{2}\left[\Gamma_{\mu}^{\dagger} U^{(k)} \Gamma_{\mu}+\Gamma_{\mu} U^{(k)^{\dagger}} \Gamma_{\mu}^{\dagger}\right] \quad k=0 . . N_{\text {truncated }}
\end{array}
$$

NSPT for matrix model

- Workflow
- Test NSPT for few N_{c} and a proper K
- Calculate internal energy up to $\mathcal{O}\left(g^{8}\right)$
- Perform $1 / N_{c}^{2}$ fitting

$$
E=\frac{1}{2 N_{c}} \sum_{\mu=1,2} \operatorname{Re} \operatorname{Tr}\left[U \Gamma_{u} U^{\dagger} \Gamma_{u}^{\dagger}\right]
$$

- Few points that need attention
- The problem with ergodicity in lead order
- Randomization the trajectory length
- Partial momentum refreshing scheme $\pi_{\mu}=c_{1} \pi_{\mu}+\mu+\sqrt{1-c_{1}^{2}} \eta_{\mu}$
- Computationally intensive part : convolution operation
- Naive algorithm $\propto \mathcal{O}\left(N_{\text {trun }}^{2}\right)$
- FFT based convolution $\propto \mathcal{O}\left(N_{\text {trun }} \log N_{\text {trun }}\right)$
- Violation of special unitarity
- Check the norm of targeted matrix
- Implement re-unitalization scheme

Numerical results

1 loop $\mathscr{O}(b)$ case (no volume dependency)

	Theoretical value	NSPT
$E^{(1)}$	$-1 / 8$	$-0.124999(1$ $)$

Numerical results

2 and $3 \mathscr{O}\left(b^{2,3}\right)$ loop case (volume dependency)

	Theoretical value	NSPT
$E^{(2)}$	-0.00390625	$-0.00390637(23)$
$E^{(3)}$	-0.000544	$-0.000545(4)$

Numerical results

4 loop $\mathscr{O}\left(b^{4}\right)$ result

- Our result for four loop case is $E^{(4)}=-0.00009998(36)$

Numerical results

Factorization

$$
\begin{aligned}
&\left\langle\mathcal{O}_{1} \mathcal{O}_{2}\right\rangle=\left\langle\mathcal{O}_{1}\right\rangle\left\langle\mathcal{O}_{2}\right\rangle+\mathbf{O}\left(1 / N_{c}^{2}\right) \\
& \kappa_{2}= \operatorname{var}(E)=\left\langle E^{2}\right\rangle-\langle E\rangle^{2} \Rightarrow 0 \quad \text { as } \quad N_{c} \rightarrow \infty
\end{aligned}
$$

Summary

- Calculation up to $\mathcal{O}\left(g^{8}\right)$ show the feasibility of combining NSPT and TRPCM.
- The value of the first three coefficients matches very precisely with its theoretical values in the large-N limit.
- The 2 and 3 loop result shows how the volume dependency was eliminated as $N_{c} \rightarrow \infty$
- 4 loop coefficient with considerable precision.

THANK YOU FOR YOUR WATCHING

